Prove that .
Answers
Answered by
0
Solution :
i ) Let tan^-1( 1/7 ) = A
=> tanA = 1/7
ii ) tan^-1( 1/13 ) = B
=> tanB = 1/13
iii ) tan^-1( 2/9 ) = C
=> tanC = 2/9
iv ) tan( A + B )
= ( tanA + tanB )/( 1 - tanAtanB )
= [ 1/7 + 1/13 ]/[ 1 - (1/7)(1/13) ]
= [(13+7)/91]/[(91-1)/91]
= 20/90
= 2/9
v ) tan ( A + B - C )
= [ tan(A+B) - tanC]/[ 1 + tan(A+B)tanC ]
= [ 2/9 - 2/9 ]/[ 1 + (2/9)(2/9)]
= ( 0 ) /[ ( 81-4 )/81 ]
= ( 0 )/(77/81)
= 0
= tan 0°
Therefore ,
A + B - C = 0
tan^-1(1/7)+ tan^-1(1/13) - tan^-1(2/9) = 0
••••
i ) Let tan^-1( 1/7 ) = A
=> tanA = 1/7
ii ) tan^-1( 1/13 ) = B
=> tanB = 1/13
iii ) tan^-1( 2/9 ) = C
=> tanC = 2/9
iv ) tan( A + B )
= ( tanA + tanB )/( 1 - tanAtanB )
= [ 1/7 + 1/13 ]/[ 1 - (1/7)(1/13) ]
= [(13+7)/91]/[(91-1)/91]
= 20/90
= 2/9
v ) tan ( A + B - C )
= [ tan(A+B) - tanC]/[ 1 + tan(A+B)tanC ]
= [ 2/9 - 2/9 ]/[ 1 + (2/9)(2/9)]
= ( 0 ) /[ ( 81-4 )/81 ]
= ( 0 )/(77/81)
= 0
= tan 0°
Therefore ,
A + B - C = 0
tan^-1(1/7)+ tan^-1(1/13) - tan^-1(2/9) = 0
••••
Answered by
0
Answer:
Step-by-step explanation:
Formula used:
Similar questions