Math, asked by rite2tanujtussar, 2 months ago

Prove that tan^{-1} (\frac{\sqrt{1+sinx}+\sqrt{1-sinx}}{\sqrt{1+sinx} )-\sqrt{1-sinx}} \ ) = \frac{x}{2}

Answers

Answered by sandy1816
1

 {tan}^{ - 1}  \frac{ \sqrt{1 + sinx}  +  \sqrt{1 - sinx} }{ \sqrt{1 + sinx} -  \sqrt{1 - sinx}  }  \\  =  {tan}^{ - 1}  \frac{ \sqrt{( {sin \frac{x}{2} + cos \frac{x}{2}  })^{2} }  +  \sqrt{( {sin \frac{x}{2}  - cos \frac{x}{2} })^{2} } }{ \sqrt{ ({sin \frac{x}{2}  + cos \frac{x}{2} })^{2} }  -  \sqrt{( {sin \frac{x}{2}  - cos \frac{x}{2} })^{2} } }  \\  =  {tan}^{ - 1}  \frac{sin \frac{x}{2}  + cos \frac{x}{2}  + sin \frac{x}{2}  - cos \frac{x}{2} }{sin \frac{x}{2}  + cos \frac{x}{2} - sin \frac{x}{2} + cos \frac{x}{2}   }  \\  =  {tan}^{ - 1}  \frac{2sin \frac{x}{2} }{2cos \frac{x}{2} }  \\  =  {tan}^{ - 1} tan \frac{x}{2}  \\  =  \frac{x}{2}

Similar questions