Math, asked by Anonymous, 1 year ago

Prove that tan ^{2} A.cos ^{2} A=1-cos ^{2} A

Answers

Answered by AvmnuSng
1
 tan^{2}A =  \frac{ sin^{2}A }{ cos^{2}A } \\  \\  tan^{2}A. cos^{2}A =  sin^{2}A  \\  \\  >>> sin^{2}A = 1 - cos^{2}A \\  \\   tan^{2}A. cos^{2}A = 1 - cos^{2}A

AvmnuSng: this is easiest proof , u can pick this best solution/////
Anonymous: yeah
AvmnuSng: then mark this as best solution ...
Anonymous: okay let someone else answer it
Answered by animaldk
1
tan^2A\cdot cos^2A=1-cos^2A\\\\L=\frac{sin^2A}{cos^2A}\cdot cos^2A=sin^2A\\\\R=1-cos^2A=sin^2A\\\\L=R\\--------------------\\tanx=\frac{sinx}{cosx}\\\\sin^2x+cos^2x=1\to sin^2x=1-cos^2x
Similar questions