prove that
Answers
Answered by
44
||✪✪ QUESTION ✪✪||
Prove that :- tanA * sinA = √(tan²A - sin²A) .
|| ★★ FORMULA USED ★★ || :-
- TanA = SinA/cosA
- (1 - cos²A) = sin²A .
|| ✰✰ ANSWER ✰✰ ||
Solving LHS First, by putting TanA = SinA/cosA , we get,
→ (SinA/cosA) * sinA
→ (sin²A/cosA)
____________________________
Now, putting This value in Question we get,
→ (sin²A/cosA) = √(tan²A - sin²A)
Squaring both sides now, we get,
→ [ (sin²A/cosA) ]² = (tan²A - sin²A)
→ (sin⁴A/cos²A) = [ (sin²A/cos²A) - sin²A ]
Taking LCM in RHS now,
→ (sin⁴A/cos²A) = [ (sin²A - cos²A * sin²A) /cos²A ]
Taking sin²A common From RHS Numerator now,
→ (sin⁴A/cos²A) = [ sin²A(1-cos²A) /cos²A ]
Putting (1-cos²A = sin²A in RHS Numerator now ,
→ (sin⁴A/cos²A) = [ sin²A * sin²A / cos²A ]
→ (sin⁴A/cos²A) = (sin⁴A/cos²A)
##✪✪ Hence Proved ✪✪##
Answered by
37
We Have :-
To Prove :-
Formula Used :-
Solution :-
There are 2 methods to do this :-
1 method :-
2 Method :-
Similar questions