Prove that .
Answers
Answered by
0
Solution :
Let cos^-1 ( a/b ) = A
=> cosA = a/b ----( 1 )
LHS = tan( π/4+A/2 )+tan( π/4 - A/2 )
= [(1+tanA/2)/(1-tanA/2)]
+[(1-tanA/2)/(1+tanA/2)]
= [(1+tanA/2)²+(1-tanA/2)²]/(1-tan²A/2)
= 2[1+tan²A/2]/(1-tan²A/2)
= 2[ sec²A/2 ]/[ 1 - (sin²A/2/cos²A/2)]
= (2sec²A/2cos²A/2)/(cos²A/2-sin²A/2)
= 2/cosA
= 2/(a/b) [ from ( 1 ) ]
= 2b/a
= RHS
•••••
Let cos^-1 ( a/b ) = A
=> cosA = a/b ----( 1 )
LHS = tan( π/4+A/2 )+tan( π/4 - A/2 )
= [(1+tanA/2)/(1-tanA/2)]
+[(1-tanA/2)/(1+tanA/2)]
= [(1+tanA/2)²+(1-tanA/2)²]/(1-tan²A/2)
= 2[1+tan²A/2]/(1-tan²A/2)
= 2[ sec²A/2 ]/[ 1 - (sin²A/2/cos²A/2)]
= (2sec²A/2cos²A/2)/(cos²A/2-sin²A/2)
= 2/cosA
= 2/(a/b) [ from ( 1 ) ]
= 2b/a
= RHS
•••••
Answered by
1
HELLO DEAR,
let cos-¹ (a/b) = x
cosx = a/b
now,
tan(π/4 + x/2) + tan(π/4 - x/2)
=> (1 + tanx/2)/(1 - tanx/2) + (1 - tanx/2)/(1 + tanx/2
=> {(1 + tanx/2)² + (1 - tanx/2)²}/{(1 - tanx/2)(1 + tanx/2)}
=> {1 + tan²x/2 + 2tanx/2 + 1 + tan²x/2 - 2tanx/2}/{(1 - tan²x/2)}
=> {2 + 2tan²x/2)}/{1 - tan²x/2}
=> 2{1 + tan²x/2}/{1 - tan²x/2}
=> 2/cosx
=> 2/(a/b)
=> 2b/a
I HOPE IT'S HELP YOU DEAR,
THANKS
let cos-¹ (a/b) = x
cosx = a/b
now,
tan(π/4 + x/2) + tan(π/4 - x/2)
=> (1 + tanx/2)/(1 - tanx/2) + (1 - tanx/2)/(1 + tanx/2
=> {(1 + tanx/2)² + (1 - tanx/2)²}/{(1 - tanx/2)(1 + tanx/2)}
=> {1 + tan²x/2 + 2tanx/2 + 1 + tan²x/2 - 2tanx/2}/{(1 - tan²x/2)}
=> {2 + 2tan²x/2)}/{1 - tan²x/2}
=> 2{1 + tan²x/2}/{1 - tan²x/2}
=> 2/cosx
=> 2/(a/b)
=> 2b/a
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions