Math, asked by sd0865, 1 year ago

prove that
 \tan(x)  =   \frac{ \sin(2x) }{2 \cos ^{2} (x) }

Answers

Answered by rizwan35
4

l.h.s. =  \:  \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }  \\  \\  =  \frac{2 \sin(x)  \cos(x) }{2 \cos(x)  \cos(x) }  \\  \\  but \: \: 2 \sin(x)  \cos(x)  =  \sin(2x)  \\  \\ therefore \\  \\  \frac{2 \sin(x) \cos(x)  }{2 \cos(x)  \cos(x) }  =  \frac{ \sin(2x) }{2 \cos {}^{2} (x) }  = r.h.s. \\  \\ proved \:  \\  \\ hope \: it \: helps...
Similar questions