Math, asked by ItzHannu001, 16 days ago

Prove that :-
 \\  \\  \\  \\



 \huge \tt \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }  = 1
 \\  \\  \\  \\  \\
•No spam​

Answers

Answered by shrikrishna888888
1

This is your answer

please mark me as brainliest....

Attachments:
Answered by AиgєℓíᴄAυяσяα
65

Taking LHS

 \sf \frac{1}{1 + x ^ {a - b}}+ \frac{ 1}{1 + x ^ {b - a}} \\  \\  \sf \: = \frac{ 1}{ 1+  \frac{x^ a }{ x^ b} } + \frac{ 1}{ 1+  \frac{x^ b }{ x^ a} } \\  \\  \sf \: =  \frac{1}{ \frac{ {x}^{b} +  {x}^{a}  }{ {x}^{b} } }  +  \frac{1}{ \frac{ {x}^{a} +  {x}^{b}  }{ {x}^{a} } }  \\  \\  \sf \: =  \frac{x^ b}{ x^ b +x^ a} + \frac{ x^ a }{x^ a +x^ b} \\  \\  \sf \: = \frac{ x^ b +x^ a }{x^ a +x^ b} \\  \\  \sf \: =1=RHS \\  \\  \bold \red{ \sf \: Hence \:  proved}

\red{\underline{ \rule{190pt}{2pt}} }

\sf \frac{1 \cancel{00}}{10 \cancel{00}}  =  \frac{1}{10}

Used Co`de

\sf \frac{1 \cancel{00}}{10 \cancel{00}} = \frac{1}{10}

Hope it'll help you :-D

Attachments:
Similar questions