Math, asked by ⲎσⲣⲉⲚⲉⲭⳙⲊ, 1 month ago

Prove That:
[/tex][tex]\sf\red{ \dfrac{tanθ}{secθ - 1} =  \dfrac{tanθ + secθ + 1}{tanθ + secθ - 1}}

Note :-
1. Don't try to spam here -_-
2. Moderators and stars can only answer ✔​

Answers

Answered by anindyaadhikari13
31

\texttt{\textsf{\large{\underline{Solution}:}}}

We have to prove that,

\tt\implies \dfrac{tan(x)}{sec(x)-1}=\dfrac{tan(x)+sec(x)+1}{tan(x)+sec(x)-1}

We know that,

\tt\implies sec^{2}(x)-tan^{2}(x)=1

Therefore,

\tt\implies sec^{2}(x)-1=tan^{2}(x)

Using identity a² - b² = (a + b)(a - b), we get,

\tt\implies \{sec(x)+1\}\{sec(x)-1\}=tan(x)\cdot tan(x)

\tt\implies \dfrac{sec(x)+1}{tan(x)}=\dfrac{tan(x)}{sec(x)-1} - (i)

Consider two ratios a/b and c/d, we can say that,

\tt\implies \dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}

From (i), we can say that,

\tt\implies \dfrac{sec(x)+1}{tan(x)}=\dfrac{tan(x)}{sec(x)-1} =\dfrac{tan(x)+sec(x)+1}{tan(x)+sec(x)-1}

\tt\implies \dfrac{tan(x)}{sec(x)-1} =\dfrac{tan(x)+sec(x)+1}{tan(x)+sec(x)-1}

Hence Proved..!!

\texttt{\textsf{\large{\underline{Know More}:}}}

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.

anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions