Math, asked by GoldenCasket, 17 days ago

Prove that :-
  \tt\cos12 \degree \cos24 \degree \cos36 \degree \cos48 \degree \cos72 \degree \cos84 \degree =  \dfrac{1}{ {2}^{6} }
Topic : Compound and Multiple Angles of Trigonometry.
( 11th ISC )
Relevant Answers Needed !!​

Answers

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \cos12 \degree \cos24 \degree \cos36 \degree \cos48 \degree \cos72 \degree \cos84 \degree

can be rewritten as

\rm \:  =  \: (\cos12 \degree \cos24 \degree cos48 \degree  \cos84 \degree)cos36 \degree  \: cos72 \degree

We know,

\boxed{\tt{  \: cos36 \degree  \:  =  \:  \frac{ \sqrt{5} + 1 }{4} \: }} \\

and

\boxed{\tt{  \: cos72 \degree  \:  =  \:  \frac{ \sqrt{5}  -  1 }{4} \: }} \\

Now, using these values, we get

\rm \:  = [cos12 \degree cos24 \degree cos48 \degree cos(180 \degree  - 96 \degree )] \times \dfrac{ \sqrt{5}  + 1}{4}  \times \dfrac{ \sqrt{5}  - 1}{4}

We know,

\boxed{\tt{  \: cos(180 \degree  - x) =  -  \: cosx \: }} \\

So, using this result, we get

\rm \:  =  - [cos12 \degree cos24 \degree cos48 \degree cos96 \degree )] \times \dfrac{( \sqrt{5})^{2}  - 1}{16}

Let assume that 12° = x

So, above expression can be rewritten as

\rm \:  = - ( cosx \: cos2x \: cos4x \: cos8x) \times \dfrac{5 - 1}{16}

can be rewritten as

\rm \:  = - ( cosx \: cos2x \: cos {2}^{2} x \: cos {2}^{3} x) \times \dfrac{4}{16}

We know,

\boxed{\sf{ cosx \: cos2x \: cos {2}^{2}x -  -  -  - cos {2}^{n}x =  \frac{sin {2}^{n + 1} x}{ {2}^{n + 1} sinx}}} \\

So, using this result, we get

\rm \:  =  \:  -  \: \dfrac{sin {2}^{3 + 1} x}{ {2}^{3 + 1} sinx}  \times \dfrac{1}{4}

\rm \:  =  \:  -  \: \dfrac{sin {2}^{4} x}{ {2}^{4} sinx}  \times \dfrac{1}{4}

\rm \:  =  \:  -  \: \dfrac{sin16x}{ {2}^{6} \:  sinx}

On substituting the value of x = 12°, we get

\rm \:  =  \:  -  \: \dfrac{sin(16 \times 12 \degree )}{ {2}^{6} \:  sin12 \degree }

\rm \:  =  \:  -  \: \dfrac{sin192 \degree }{ {2}^{6} \:  sin12 \degree }

\rm \:  =  \:  -  \: \dfrac{sin(180 \degree  + 12 \degree )}{ {2}^{6} \:  sin12 \degree }

We know,

\boxed{\tt{  \: sin(180 \degree  + x) =  \:  -  \: sinx \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{sin12 \degree }{ {2}^{6}  \: sin12 \degree }

\rm \:  =  \: \dfrac{1}{ {2}^{6} }

Hence,

\boxed{\sf{ \cos12 \degree \cos24 \degree \cos36 \degree \cos48 \degree \cos72 \degree \cos84 \degree \:  =  \:  \frac{1}{ {2}^{6} } \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\rm \: sin18 \degree  = cos72 \degree  = \dfrac{ \sqrt{5}  - 1}{4}

\rm \: cos18 \degree  = sin72 \degree  = \dfrac{ \sqrt{10 + 2 \sqrt{5} }}{4}

\rm \: cos36 \degree  = sin54 \degree  = \dfrac{ \sqrt{5}  + 1}{4}

\rm \: cos54 \degree  = sin18 \degree  = \dfrac{ \sqrt{10  -  2 \sqrt{5} }}{4}

Answered by Anonymous
16

Answer:

Given ✿

cos12.cos24.cos36.cos48.cos72.cos96

 =  \frac{2sin \: 12.cos12. \: cos24 \: .cos48. \: cos96. \: cos36 \: .cos72</p><p>}{ \: 2sin12}  \\  \\   = \frac{2sin24.cos24. \: cos48. \: cos96 \: .cos36. \: cos72</p><p>}{4sin12}  \\  \\   = \frac{2sin48 \: cos48. \: cos96. \: cos36. \: cos72</p><p>}{8sin12}  \\  \\   = \frac{2sin96.cos96. \: cos36. \: cos72</p><p>}{16sin12}  \\  \\  =  \frac{sin192. \: cos36. \: cos72}{16sin12}  =  \\  \\ =   \frac{sin(180+12).cos36. \: cos72</p><p>}{16sin12}   \\  \\ =− \frac{1}{16} cos36 \: .cos72 \\  \\   = -  \frac{1}{16} ( \frac{ \sqrt{5 - 1} }{4} ) (\frac{ \sqrt{5 - 1} }{4} ) \\  \\  =  -  \frac{1}{64}  \\  \\  =  \frac{1}{ {2}^{6} }

Step-by-step explanation:

Hope it helps ✿

Similar questions