Science, asked by BRAINLYBOOSTER12, 1 month ago

Prove that :-
\tt\dfrac{tanA}{1 - cotA} + \dfrac{cotA}{1 - tanA} = secA + cosecA + 1

Answers

Answered by Anonymous
80

Formula's Used :-

  • tanA = sinA/cosA
  • cotA = cosA/sinA
  • a³ - b³ = (a - b)(a² + ab + b²)
  • sin²A + cos²A = 1
  • 1/cosA = secA
  • 1/sinA = cosecA

Proof :-

  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\sf :\implies L.H.S

\:  \:  \:  \:   \:  \:  \:  \:  \pink{\: \:\::\implies \sf \dfrac{tanA}{1 - cotA} + \dfrac{cotA}{1 - tanA}}\\

 \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{\bigg(\dfrac{sinA}{cosA}\bigg)}{1 - \bigg(\dfrac{cosA}{sinA}\bigg)} + \dfrac{\bigg(\dfrac{cosA}{sinA}\bigg)}{1 - \bigg(\dfrac{sinA}{cosA}\bigg)}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies   \ \sf \dfrac{\bigg(\dfrac{sinA}{cosA}\bigg)}{\bigg(\dfrac{sinA - cosA}{sinA}\bigg)} + \dfrac{\bigg(\dfrac{cosA}{sinA}\bigg)}{\bigg(\dfrac{cosA - sinA}{cosA}\bigg)}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \bigg(\dfrac{sinA}{cosA} \times \dfrac{sinA}{sinA - cosA}\bigg) + \bigg(\dfrac{cosA}{sinA} \times \dfrac{cosA}{cosA - sinA}\bigg)\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{sinA \times sinA}{cosA \big(sinA - cosA\big)} + \dfrac{cosA \times cosA}{sinA \big(cosA - sinA\big)}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{sin^2A}{cosA \big(sinA - cosA\big)} + \dfrac{cos^2A}{sinA \big(cosA - sinA\big)}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies   \ \sf \dfrac{sin^2A}{cosA \big(sinA - cosA\big)} - \dfrac{cos^2A}{sinA \big(sinA - cosA\big)}\\

 \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{1}{sinA - cosA} \ \Bigg(\dfrac{sin^2A}{cosA} - \dfrac{cos^2A}{sinA} \Bigg)\\

 \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{1}{sinA - cosA} \ \Bigg(\dfrac{sin^3A - cos^3A}{cosAsinA} \Bigg)\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{1}{sinA - cosA} \ \Bigg(\dfrac{\big(sinA - cosA\big) \big(sin^2A + sinAcosA + cos^2A\big)}{cosAsinA} \Bigg)\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{1 + sinAcosA}{cosAsinA}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{1}{cosAsinA} + \dfrac{sinA cosA}{cosA sinA}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  \ \sf \dfrac{1}{cosA} \times \dfrac{1}{sinA} + \dfrac{\cancel{sinA}. \cancel{cosA}}{\cancel{cosA}. \cancel{sinA}}\\

  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\pink{\::\implies  \sf secA \times cosecA+ 1}\\

  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\sf: \implies R.H.S

  • Hence, Proved..!
Answered by nsvaggar
6

Answer:

But, growing up, all that her mother hoped for her was that she'd get married by the age of 18. To be exact, it was

hope this helps you

Attachments:
Similar questions