Math, asked by Anonymous, 1 month ago

Prove that :-

 \tt \displaystyle{ \sum \limits^{n}_{i = 1} \bigg(    \log(a_{i}) \bigg) =  \log  \bigg(  \prod \limits^{n}  _{i = 1 } (a_{i})\bigg)}




Answers

Answered by mathdude500
7

\large\underline{\sf{Given \:Question - }}

Prove that,

\rm :\longmapsto\:\tt \displaystyle{ \sum \limits^{n}_{i = 1} \bigg( \log(a_{i}) \bigg) = \log \bigg( \prod \limits^{n} _{i = 1 } (a_{i})\bigg)}

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:\tt \displaystyle{ \sum \limits^{n}_{i = 1} \bigg( \log(a_{i}) \bigg)}

can be rewritten as

\rm \:  =  \:  \: log \: a_{1}+ log \: a_{2} + log \: a_{3} +  -  -  -   + log \: a_{n}

We know that,

\boxed{ \bf{ logx \:  +  \: logy \:  =  \: logxy \: }}

[ See the attachment for the proof of this identity ]

So, using this identity, we can rewrite the above as

\rm \:  =  \:  \: log \: \bigg(a_{1} \times a_{2} \times a_{3} \times  -  -  -  -  \times a_{n}\bigg)

\rm \:  =  \:  \:{ \log \bigg( \prod \limits^{n} _{i = 1 } (a_{i})\bigg)}

Hence,

\boxed{ \qquad \rm{ \tt \displaystyle{ \sum \limits^{n}_{i = 1} \bigg( \log(a_{i}) \bigg) = \log \bigg( \prod \limits^{n} _{i = 1 } (a_{i})\bigg) \qquad}}}

Additional Information :

\boxed{ \rm{  {e}^{logx}  = x}}

\boxed{ \rm{  {e}^{ylogx}  =  {x}^{y} }}

\boxed{ \rm{  {a}^{ log_{a}(x) }  = x}}

\boxed{ \rm{  {a}^{y log_{a}(x) }  =  {x}^{y} }}

\boxed{ \rm{  log_{x}(x) = 1}}

\boxed{ \rm{  log_{ {x}^{y} }( {x}^{z} ) =  \frac{z}{y} }}

\boxed{ \rm{  log_{ {x}^{y} }( {w}^{z} ) =  \frac{z}{y}  \: log_{x}(w)  }}

\boxed{ \rm{  {x}^{y} = z \:  \implies \: y \:  =  \:  log_{x}(z) }}

\boxed{ \rm{ log \:  {e}^{x}  \:  =  \: x \: }}

Attachments:
Similar questions