Math, asked by Mysteriarch, 19 days ago

Prove that :-
 \tt \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2 \cos8 \:  \theta} } }  = 2 \cos \theta
Given that ;
 \theta \:  \epsilon \:(  -  \dfrac{ \pi}{8}  ,\dfrac{ \pi}{8} )
No spamming ​

Answers

Answered by mathdude500
40

\large\underline{\sf{Solution-}}

Consider,

\rm \: \sqrt{2 + \sqrt{2 + \sqrt{2 + 2 \cos8 \: \theta} } } \\

can be rewritten as

\rm \:  =  \: \sqrt{2 + \sqrt{2 + \sqrt{2(1 + \cos8 \: \theta)} } } \\

We know,

\boxed{\sf{  \: \: cos2x =  {2cos}^{2}x - 1 \: }} \\

So, using this identity, we get

\rm \:  =  \: \sqrt{2 + \sqrt{2 + \sqrt{2( {2cos}^{2} \: 4\theta}) } }

\rm \:  =  \: \sqrt{2 + \sqrt{2 + \sqrt{ {(2cos4\theta)}^{2} \:} } } \\

As it is given that,

\rm \: \theta \: \epsilon \: \bigg( - \dfrac{ \pi}{8} ,\dfrac{ \pi}{8}\bigg )\rm\implies \:4\theta \: \epsilon \:\bigg( - \dfrac{ \pi}{2} ,\dfrac{ \pi}{2}\bigg )

\rm\implies \:cos4\theta > 0 \\

\rm\implies \: \sqrt{ {cos}^{2} 4\theta}  =  |cos4\theta|  = cos4\theta \\

So, using this, above expression can be rewritten as

\rm \:  =  \: \sqrt{2 + \sqrt{2 +  2\cos4\: \theta}}

\rm \:  =  \: \sqrt{2 + \sqrt{2(1 +  \cos4\: \theta)}} \\

\rm \:  =  \: \sqrt{2 + \sqrt{2( {2cos}^{2}2 \theta)}} \\

\rm \:  =  \: \sqrt{2 + \sqrt{( {2cos2\theta)}^{2}}} \\

As it is given that,

\rm \: \theta \: \epsilon \: \bigg( - \dfrac{ \pi}{8} ,\dfrac{ \pi}{8}\bigg )\rm\implies \:2\theta \: \epsilon \:\bigg( - \dfrac{ \pi}{4} ,\dfrac{ \pi}{4}\bigg )

\rm\implies \:cos2\theta > 0 \\

\rm\implies \: \sqrt{ {cos}^{2} 2\theta}  =  |cos2\theta|  = cos2\theta \\

So, using this, above expression can be rewritten as

\rm \:  =  \:  \sqrt{2 + 2cos2\theta}  \\

\rm \:  =  \:  \sqrt{2 (1+ cos2\theta)}  \\

\rm \:  =  \:  \sqrt{2( {2cos}^{2} \theta)}  \\

\rm \:  =  \:  \sqrt{ {(2cos\theta)}^{2} }  \\

As it is given that,

\rm \: \theta \: \epsilon \:\bigg( - \dfrac{ \pi}{8} ,\dfrac{ \pi}{8} \bigg) \\

\rm\implies \:cos\theta > 0 \\

\rm\implies \: \sqrt{ {cos}^{2} \theta} =  |cos\theta|  = cos\theta \\

So, using this, we get

\rm \:  =  \: 2 \: cos\theta \:  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \sqrt{2 + \sqrt{2 + \sqrt{2 + 2 \cos8 \: \theta} } } = 2cos\theta \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:sin2\theta = 2sin\theta \: cos\theta \:  =  \:  \frac{2tan\theta}{1 +  {tan}^{2} \theta} \: }} \\

\boxed{\sf{  \:cos2\theta =  {cos}^{2}\theta -  {sin}^{2}\theta = 1 - 2 {sin}^{2}\theta =  {2cos}^{2}\theta - 1 \: }} \\

\boxed{\sf{  \:tan2\theta =  \frac{2tan\theta}{1 -   {tan}^{2} \theta}  \: }} \\

\boxed{\sf{  \:sin3\theta = 3sin\theta -  {4sin}^{3}\theta \: }} \\

\boxed{\sf{  \:cos3\theta =  {4cos}^{3}\theta - 3cos\theta \: }} \\

\boxed{\sf{  \:tan3\theta =  \frac{3tan\theta -  {tan}^{3} \theta}{1 -  {3tan}^{2} \theta} \: }} \\

Answered by talpadadilip417
27

Step-by-step explanation:

 \begin{aligned}  \tt \: Sol _{n}.  \qquad \: L.H.S. & \tt=\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 8 \theta}}} \\ \\  &=\sqrt{2+\sqrt{2+\sqrt{2\left(2 \cos ^{2} 4 \theta\right)}}} \\ \\  &=\sqrt{2+\sqrt{2+2 \cos 4 \theta}}\\  \\ &=\sqrt{2+\sqrt{2(1+\cos 4 \theta)}} \\  \\ &=\sqrt{2+\sqrt{2\left(2 \cos ^{2} 2 \theta\right)}}\\  \\ &=\sqrt{2+2 \cos 2 \theta} \\  \\ &=\sqrt{2(1+\cos 2 \theta)}\\  \\ &=\sqrt{2 \cdot\left(2 \cos ^{2} \theta\right)}\\  \\ &=\sqrt{4 \cos ^{2} \theta}=2|\cos \theta| \\ \\  &=2 \cos \theta \text { as } \theta \in\left[\frac{-\pi}{8}, \frac{\pi}{8}\right] \\  \\ & \Rightarrow \cos \theta>0 \Rightarrow|\cos \theta|\\ \\  &=\cos \theta  \\  \\ & =  \text{ R. H. S}\end{aligned}

Similar questions