Math, asked by PragyaTbia, 1 year ago

Prove that (\vec a \ + \vec b) . (\vec a + \vec b)=\arrowvert\vec a \arrowvert ^2 + \arrowvert\vec b \arrowvert ^2 , if and only if \vec a , \vec b are perpendicular, given \vec a \neq 0, \vec b \neq 0.

Answers

Answered by MaheswariS
0

Answer:

\text{\bf\,Concept used:}

\vec{a}\text{ and }\vec{b} \text{are perpendicular }\iff \vec{a}.\vec{b}=0

\text{Given:}

(\vec{a}+\vec{b}).(\vec{a}+\vec{b})=|\vec{a}|^2+|\vec{b}|^2

\iff\:|\vec{a}|^2+|\vec{b}|^2+2\vec{a}.\vec{b}=|\vec{a}|^2+|\vec{b}|^2

\iff\:2\,\vec{a}.\vec{b}=0

\iff\:\vec{a}.\vec{b}=0

\iff\:\vec{a}\:\perp\:\vec{b}

Answered by ujalasingh385
0

Step-by-step explanation:-

In this question,

We need to prove

\mathbf{\vec{a}\text{ and }\vec{b} \textrm{are perpendicular }\iff \vec{a}.\vec{b}=0}

Proof-:

(\vec{a}+\vec{b}).(\vec{a}+\vec{b})=|\vec{a}|^2+|\vec{b}|^2

On multiplying we get,

\iff\:|\vec{a}|^2+|\vec{b}|^2+2\vec{a}.\vec{b}=|\vec{a}|^2+|\vec{b}|^2

\iff\:2\,\vec{a}.\vec{b}=0

\iff\:\vec{a}.\vec{b}=0        

using the concept of dot product we get i.e

 {\vec{a}.\vec{b}Cos90\ =\ 0}

Hence,\mathbf{\iff\:\vec{a}\:\perp\:\vec{b}}

Similar questions