Math, asked by akhtarbarq, 10 months ago

prove that
 {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx = ( \frac{x - y} { \sqrt{2} })^{2}  + ( \frac{y - z}{ \sqrt{2} } )^{2} ( \frac{z - x}{ \sqrt{2} } )^{2}

Answers

Answered by Cynefin
2

Answer:

Hey mate, Good evening ❤

#Here's ur answer..☆☆☆

Step-by-step explanation:

 \boxed{ \huge{ \mathcal{ \pink{answer...}}}}

To prove...

 {x}^{2} + {y}^{2} + {z}^{2} - xy - yz - zx = ( \frac{x - y} { \sqrt{2} })^{2} + ( \frac{y - z}{ \sqrt{2} } )^{2} ( \frac{z - x}{ \sqrt{2} } )^{2}

 \red{ \bold{given....rhs}} \\ =  ( \frac{(x - y) }{ \sqrt{2} } ) {}^{2}  + ( \frac{(y - z) }{ \sqrt{2} } ) {}^{2}  + ( \frac{(z - x)}{ \sqrt{2} } ) {}^{2}  \\  =  \frac{(x - y) {}^{2} }{2}  +  \frac{(y - z) {}^{2} }{2}  +  \frac{(z - x) {}^{2} }{2}  \\  =  \frac{x {}^{2}  -  2xy +  {y}^{2}    }{2}  +  \frac{ {y}^{2}  - 2yz +   {z}^{2}  }{2}  +  \frac{ {z}^{2} -  2zy +  {x}^{2} }{2}  \\  =  \frac{2 {x}^{2} + 2 {y}^{2} + 2 {z}^{2} - 2xy - 2yz - 2zx   }{2}  \\  =  \green{ \bold{ {x}^{2}  +  {y}^{2}  +  {z}^{2} - xy - yz - zx(lhs)}} \\ ...hence \: proved....

➡️Hope this helps you..

➡️Pls mark as brainliest..

And pls follow me..¤

Similar questions