Art, asked by lokjp10, 1 year ago

prove that
(x ^{3}  + y ^{3} ) = x ^{3}  + y ^{3}  + 3xy(x + y)

Answers

Answered by AnishaG
50
 \huge \red {Hey \:mate}

✨ Here's ur answer

to prove

 x ^{3} + y ^{3} ) = x ^{3} + y ^{3} + 3xy(x + y)

We know that

 x ^{3} + y ^{3} . =(x+y) (x+y) (x +y)

=(x+y)
x ^{2} + 2xy + y ^{2}
=

x {}^{3} + 2x ^{2} y + xy ^{2} + yx {}^{2} +2xy ^{2} + y{?}^{3}

Now,.. x ^{3} + y ^{3} ) = x ^{3} + y ^{3} + 3xy(x + y)

kamini9: exam ka dar?
kamini9: hehe
kamini9: Ohk BEST OF LUCK
kamini9: wello ji :)
kamini9: ur class?
BrainlySweet: hii
Answered by Shanvi62005
7

To prove:


(x^3+y^3)= x^3+y^3+3xy(x+y)


Proof:


We know that:


(x^3+y^3) =(x+y)(x+y)(x+y)


=(x+y)(x+y)^2


=(x+y)(x^2+2xy+y^2)


=x(x^2+2xy+y^2)+y(x^2+2xy+y^2)


=x^3+2x^2y+xy^2+x^2y+2xy^2+y^3


=x^3+3x^2y+3xy^2+y^3


=x^3+y^3+3xy(x+y)


HENCE PROVED!!!!!!!

Similar questions