Math, asked by Tasneetsinghajmai, 1 year ago

prove that
(x + y) ^{3} - (x - y) ^{3}   - 6y( {x}^{2}  -  {y}^{2} ) =  {8y}^{3}

Answers

Answered by Kmg13teen
2

 {(x + y)}^{3}  -  {(x - y)}^{3}  - 6y( {x}^{2}  -  {y}^{2}) = 8 {y}^{3}
Expand by using formula

( {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3} ) - ( {x}^{3}  - 3 {x}^{2} y + 3x {y}^{2}  -  {y}^{3} ) - 6 {x}^{2} y + 6 {y}^{3}  = 8 {y}^{3}
Remove the brackets

 {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3}  -  {x}^{3}  + 3 {x}^{2} y - 3x {y}^{2}  +  {y}^{3}  - 6 {x}^{2}y + 6 {y}^{2}   = 8 {y}^{3}
Eliminate the opposites

0 +  {y}^{3}  +  {y}^{3}  + 6 {y}^{3}  = 8 {y}^{3}

Add similar terms

8 {y}^{3}  = 8 {y}^{3}




L.H.S = R.H.S

HENCE PROVED




Similar questions