Math, asked by opknight, 5 days ago

PROVE THAT
(x + y + z)^{3}  -  {x}^{3}  -  {y}^{3}  -  {z }^{3}  = 3(x + y)(y + z)(z + x)
PLS I WANT BEFORE 18:30

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\: {(x + y + z)}^{3} -  {x}^{3} -  {y}^{3} -  {z}^{3}

can be re-arranged as

\rm  =  [{(x + y + z)}^{3} -  {x}^{3} ]-[  {y}^{3}  + {z}^{3}]

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}}}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{3} -  {y}^{3} = (x -  y)( {x}^{2} + xy +  {y}^{2})}}}

So, using these Identities, we get

\rm = [x + y + z - x][ {(x + y + z)}^{2} +  {x}^{2} + x(x + y + z)] - (y + z)( {y}^{2} - yz +  {z}^{2})

\rm = [y + z][ {x}^{2} +  {y}^{2} +  {z}^{2} + 2xy + 2yz + 2zx +{x}^{2} + {x}^{2}  + xy + xz] - (y + z)( {y}^{2} - yz +  {z}^{2})

\rm = [y + z][{x}^{2} +  {y}^{2} +  {z}^{2} + 2xy + 2yz + 2zx +{x}^{2} + {x}^{2}  + xy + xz- {y}^{2} + yz - {z}^{2}]

\rm = [y + z][3{x}^{2} + 3xy + 3yz + 3zx]

\rm = 3[y + z][{x}^{2} + xy + yz + zx]

\rm = 3[y + z][x(x + y)+ z(x  + y)]

\rm = 3[y + z][(x + y)(x  + z)]

\rm \:  =  \: 3(x + y)(y + z)(z + x)

Hence,

\boxed{\tt{ {(x + y + z)}^{3} -  {x}^{3} -  {y}^{3} -  {z}^{3}  = 3(x + y)(y + z)(z + x)}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Answered by OoAryanKingoO78
2

Answer:

\large\underline{\bf{Solution-}}

Consider LHS

\rm :\longmapsto\: {(x + y + z)}^{3} -  {x}^{3} -  {y}^{3} -  {z}^{3}

can be re-arranged as

\rm  =  [{(x + y + z)}^{3} -  {x}^{3} ]-[  {y}^{3}  + {z}^{3}]

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}}}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{3} -  {y}^{3} = (x -  y)( {x}^{2} + xy +  {y}^{2})}}}

So, using these Identities, we get

\rm = [x + y + z - x][ {(x + y + z)}^{2} +  {x}^{2} + x(x + y + z)] - (y + z)( {y}^{2} - yz +  {z}^{2})

\rm = [y + z][ {x}^{2} +  {y}^{2} +  {z}^{2} + 2xy + 2yz + 2zx +{x}^{2} + {x}^{2}  + xy + xz] - (y + z)( {y}^{2} - yz +  {z}^{2})

\rm = [y + z][{x}^{2} +  {y}^{2} +  {z}^{2} + 2xy + 2yz + 2zx +{x}^{2} + {x}^{2}  + xy + xz- {y}^{2} + yz - {z}^{2}]

\rm = [y + z][3{x}^{2} + 3xy + 3yz + 3zx]

\rm = 3[y + z][{x}^{2} + xy + yz + zx]

\rm = 3[y + z][x(x + y)+ z(x  + y)]

\rm = 3[y + z][(x + y)(x  + z)]

\rm \:  =  \: 3(x + y)(y + z)(z + x)

Hence,

\boxed{\tt{ {(x + y + z)}^{3} -  {x}^{3} -  {y}^{3} -  {z}^{3}  = 3(x + y)(y + z)(z + x)}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions