Prove that
that √(1-sin ø /1+ Sin ø)
Sec ø - tanø
Answers
Answered by
0
Step-by-step explanation:
square root of (1-sinx/1+sinx)
divide and multiply by (1-sinx)
square root of (1-sinx)(1-sinx)/(1+sinx)(1-sinx)
square root of (1-sinx)^2/1-sin^2x
1-sin^2x=cos^2x
square root of (1+sin^2x-2sinx)/cos^2x
square root of (1/cos^2x+sin^2x/cos^2x-2sinx/cos^2x)
=1/cos^2x=sec^2x
=sin^2x/cos^2x=tan^2x
=2sinx/cos^2x=2tanxsecx
square foot of sec^2x+tan^2x-2tanxsecx
it is in the form of (a-b)^2=a^2+b^2-2ab
square root of (secx-tanx)^2
square root and square canceled
therefore secx-tanx
square root of (1-sinx)/(1+sinx)=secx-tanx
Similar questions