prove that the angle between the two tangents drawn from the external point to the circle in a supplementary of the angle subtended by the line segment joining the point of contact in a circle sector
Answers
Answered by
1
Answer:
Step-by-step explanation:
PA and PB are the two tangents drawn from an external point P at the point of contacts A and B on the circle with centre O respectively.
∴ OA ⊥ PA and OB ⊥ PB
[∵ radius of a circle is always ⊥ to the tangent at the point of contact.]
∴ ∠ OAP = ∠ OBP = 90°
we know that –
Sum of all the angles of a quadrilateral = 360°
In quadrilateral OAPB,
∠ OAP + ∠ OBP + ∠ APB + ∠ AOB = 360°
⇒ 180° + ∠ APB + ∠ AOB = 360°
∴ ∠ APB + ∠ AOB = 180°
Hence, the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact to the centre.
Similar questions