Math, asked by nirmitbhagat2006, 14 hours ago

Prove that the area of an equalateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals ​

Answers

Answered by suchismitadash7542
0

hope you can understand

Attachments:
Answered by kamalhajare543
13

Answer:

Correct Question:-

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals

Given :-

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

→ A square ABCD an equilateral triangle ABC and ACF have been described on side BC and diagonal AC respectively.

To Prove :-

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

  \qquad\sf \longrightarrow arc\big( ∆BCE \big) = \sf{ \frac{1}{2}  \:  \: arc\big( \triangle ACF \big) . } \\

Proof :-

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Since each of the ∆ABC and ∆ACF is an equilateral triangle, so each angle of his strength is one of them is 60° . So, the angles are equiangular, and hence similar.

 \sf \longrightarrow  \:  \:  \:  \:  \:  \underline{ \boxed{ \sf \purple{∆  BCE  \sim ∆ACF}}}

.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \qquad \sf \underline{  Note:-}

We know that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

 \qquad \longrightarrow\sf{ \frac{ arc\big( \triangle BCE \big) }{ arc\big( \triangle ACF \big) } = \frac{{BC}^{2} }{ {AC}^{2}} = \frac{{BC}^{2}}{2{(BC)}^{2}}. } \\

[ Because, AC is hypotenuse

=> AC = √2BC.]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \\  \\  \longrightarrow\sf{ \frac{ arc \big( \triangle BCE  \big) }{ arc \big( \triangle ACF  \big) } = \frac{1}{2} . }\\ \\

 \sf \: \qquad  \longrightarrow \underline{ \boxed{ \purple{  \sf \: ar( \triangle BCE ) = \frac{1}{2} \times ar\big( \triangle ACF \big)}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

  • Hence proved.
Attachments:
Similar questions