Math, asked by nisshabi6889, 1 year ago

Prove that the area of an equilateral triangle is equal to âš3â„4 a 2 , where a is the side of the triangle.

Answers

Answered by plb62
5
Hope it helps you. See the attachment.
Attachments:
Answered by BrainlyKing5
0
\underline{\textbf{Hey mate Here is your answer }}

\underline{\textbf{To Prove }}

\boxed{\mathbf{Area\: Of\: an\: Equilateral \:Triangle \:= \:\frac{ \sqrt{3} }{4} {side}^{2} \:}}

\underline{\textbf{Proof ---}}

Now let

\textbf{∆ABC Be An Equilateral Triangle}

\textbf{And Measure Of Side = a }

Now By \textbf{Heron's Formula} That is

\boxed{\mathbf{Area\:Of\; Triangle\:= \: \sqrt{s(s\: -\: a)(s\: - \:b)(s \:- \:c)} }}

Therefore By This We Have

\mathbf{ar(\triangle\:ABC\:)\:=\: \sqrt{s(s \:- \:a)(s\: -\: b)(s \:- \:c)} \:} ------ EQ ( 1 )

Where

S = Semi Perimeter And Sides = a , b , c

Therefore

\mathbf{S \:= \:\frac{a+b+c}{2}}

Since ∆ABC Is an Equilateral Triangle with a As side , So

\mathbf{S \:= \:\frac{3a}{2}}

Now Putting this value In EQ 1 We Have ​

\mathbf{ar(\triangle\:ABC\:)\:=\: \sqrt{\frac{3a}{2}( \frac{3a}{2}\:- \:a)(\frac{3a}{2}\: -\: a)(\frac{3a}{2}\:- \:a)}}

Now By Taking LCM And solving the Bracket We Have ​

\mathbf{ar(\triangle\:ABC\:)\:=\: \sqrt{\frac{3a}{2}( \frac{a}{2}\:)(\frac{a}{2}\:)(\frac{a}{2}\:)}}

That Is ​

\mathbf{ar(\triangle\:ABC\:)\:=\: \sqrt{3 \times {( \frac{a}{2}) }^{2} {( \frac{a}{2}) }^{2} }}

That Is Now Taking Squares Out We Have ​

\mathbf{ar(\triangle\:ABC\:)\:=\: \frac{a}{2} \times \frac{a}{2} \: \sqrt{3 }}

That Is

\mathbf{ar(\triangle\:ABC\:)\:=\: \frac{ {a}^{2} }{4} \: \sqrt{3 }}

Therefore We Have

\boxed{\mathbf{ar(\triangle\: ABC\:)\: = \:\frac{ \sqrt{3} }{4} {a}^{2} }}

\underline{\mathbf{Hence\: Proved \: That }}

\boxed{\mathbf{ Area\: Of \: An\: Equilateral\:Triangle \:Is \:=\:\frac{ \sqrt{3} }{4} {a}^{2} }}

\large{\blue{Thanks...}}

\underline{\bold{\star\:\: BrainlyKing5\:\:\star}}
Similar questions