Math, asked by srushti3789, 4 months ago

prove that the area of Equilateral triangle
{3 \div } 4a2

Answers

Answered by TMarvel
1

Step-by-step explanation:

Let a triangle, whose sides are a,b,c

since in an equilateral triangle all sides are equal

a=b=c

semi-perimeter of the triangle = (a+b+c)/2

= 3a/2

Using Heron's formulae:

area \: of \: a \: triangle \:  =  \sqrt{s(s - a)(s - b)(s - c)}  \\  =   \sqrt{ \frac{3a}{2} ( \frac{3a}{2}  - a) ( \frac{3a}{2}  - a) ( \frac{3a}{2}  - a)} \:  \:  \:  \: {since \: a = b = c} \\  =  \sqrt{ \frac{3a}{2} {( \frac{a}{2} )}^{3}  }  \\  =   \sqrt{ \frac{3a}{2}  \times  \frac{ {a}^{3} }{8 } }  \\  =  \sqrt{ \frac{3 {a}^{4} }{16} }  \\  =   \frac{ \sqrt{3} {a}^{2}  }{4}

PROVED

Similar questions