Math, asked by rayhan2003, 14 days ago

Prove that the coefficient of x^n in the expansion (1+x+x2)^-1​ is 1,0,−1 according as n is of the form 3m,3m−1 or 3m+1​

Answers

Answered by realanshuu
0

Dear Student,

⇒Answer :

Let,

∴ y  =  \frac{1}{  1+  x +  x^{2} }

Multiply and divide by  1-x

y  =  \frac{1 - x }{1 - x^{3} }  = ( 1 - x ) [ 1 - x^{3} ] ^{-1}

Expanding the later bracket

= ( 1 - x ) [ 1 + x³  +  2 × \frac{ x^{6} }{2!}  +  2 × 3  \frac{ x^{ 9 } }{ 3 ! } ··· (−1)(−2) × (−3) × (−m)  \frac{ -x^{3m} }{m!} ..  ]

= (1−x)  [1+ x³ + x ⁶ + x ⁹ .. x^{ 3m-3}  + x^{ 3m }... ]

coefficient of x^{ 3 m }

⇒ 1

coefficient of x^{3m+1 }

⇒ - 1

coefficient of x^{ 3m -1 }

⇒0  because no such term exits

 

Similar questions