Math, asked by gsatya962, 10 months ago

prove that the curl of the gradient of
(scalar function) is zero​

Answers

Answered by pulakmath007
28

SOLUTION :

TO PROVE

The curl of the gradient of (scalar function) is zero

In vector form for function f

 \sf{ \nabla \times ( \nabla f \: ) =  \vec{ 0} }

PROOF

 \sf{ \nabla \times ( \nabla f \: )  }

 \displaystyle =   \sf{ \nabla \times  \bigg( \:   \hat{i}  \:  \frac{ \partial f}{ \partial x}  +  \hat{j}  \:  \frac{ \partial f}{ \partial y}  +  \hat{k}  \:  \frac{ \partial f}{ \partial z}   \: \bigg)  }

 = \sf{ \displaystyle\begin{vmatrix}  \hat{i} &  \hat{j} &  \hat{k}\\   \frac{ \partial}{ \partial x}  & \frac{ \partial}{ \partial y} &  \frac{ \partial}{ \partial z} \\ \frac{ \partial f}{ \partial x} & \frac{ \partial f}{ \partial y} &  \frac{ \partial f}{ \partial z} \end{vmatrix} }

 =  \displaystyle   \sf\sum \:  \hat{i}  \bigg( \:  \frac{ { \partial}^{2} f}{ \partial y \partial z}  - \frac{ { \partial}^{2} f}{ \partial y \partial z}  \:  \bigg)

 =  \vec{0}

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Divergence of r / r^3 is

(a) zero at the origin

(b) zero everywhere

(c) zero everywhere except the origin

(d) nonzero

https://brainly.in/question/22316220

Similar questions