Math, asked by Anonymous, 1 month ago

Prove that the derivative of Ln(x) = 1/x from the definition of implicit differentiation.​​

Answers

Answered by geniusmathematician
0

please mark me as brainliest answer

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:y = ln(x)

So,

\rm :\longmapsto\: {e}^{y} = {e}^{ln(x)}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: {e}^{ln(x)} \:  =  \: x \: }}}

So,

\rm :\longmapsto\:{e}^{y} = x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}{e}^{y} = \dfrac{d}{dx}x

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}{e}^{x} = {e}^{x} \: }} \\  \\\boxed{ \tt{ \: \dfrac{d}{dx}x = 1 \: }} \\

So, using these, we get

\rm :\longmapsto\:{e}^{y}\dfrac{dy}{dx} = 1

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{{e}^{y}}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x}  \:  \:  \:  \:  \:  \:  \{ \because \: {e}^{y} = x \}

Hence,

\rm \implies\:\boxed{ \tt{ \: \dfrac{d}{dx} \: ln(x) \:  =  \:  \frac{1}{x} \: }}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions