Math, asked by dvpal, 1 year ago

prove that the determinant is independent of theta

Attachments:

Answers

Answered by MaheswariS
0

\textbf{Given:}

\left|\begin{array}{ccc}x&sin\theta&cos\theta\\-sin\theta&-x&1\\cos\theta&1&x\end{array}\right|

\textbf{To prove: The determinant is independent of $\theta$}

\text{Consider}

\left|\begin{array}{ccc}x&sin\theta&cos\theta\\-sin\theta&-x&1\\cos\theta&1&x\end{array}\right|

\text{Expanding along first row, we get}

=x(-x^2-1)-sin\theta(-x\;sin\theta-cos\theta)+cos\theta(-sin\theta+x\;cos\theta)

=-x^3-x+x\;sin^2\theta+sin\theta\;cos\theta-sin\theta\;cos\theta+x\;cos^2\theta

=-x^3-x+x\;sin^2\theta+x\;cos^2\theta

=-x^3-x+x(sin^2\theta+cos^2\theta)

=-x^3-x+x(1)

=-x^3-x+x

=-x^3\;\text{which is independent of $\theta$}

\textbf{Hence proved}

Find more:

1.Prove that:det(x+y x x, 5x+4y 4x 2x, 10x+8y 8x 3x ) =x^3

https://brainly.in/question/4612859

2.The sum of the real roots of the equation | x 6 1 |

| 2 3x (x - 3)| = 0 | 3 2x (x = 2)|

is equal to (A) -4 (B) 0

(C) 6 (D) 1

https://brainly.in/question/16074720

Similar questions