Math, asked by wazbir100, 1 year ago

prove that the diagonals of a parallelogram bisect each other at a point​

Answers

Answered by hrithikkotyan56
0

Answer:

because both sides are equal

Answered by JanviMalhan
75

\huge\sf \orange{hello}..

Let consider a parallelogram ABCD in which AB||CD and AD||BC.

In ∆AOB and ∆COD , we have

∠DCO=∠OAB (ALTERNATE ANGLE)

∠CDO= ∠OBA. (ALTERNATE ANGLE)

AB=CD. (OPPOSITE SIDES OF ||gram)

therefore , ∆ AOB ≅ ∆COD. (ASA congruency)

hence , AO=OC and BO= OD. (C.P.C.T)

Similar questions