prove that the diagonals of a rhombus bisect each other at right angle
Answers
Hey Mate!!
Let ABCD is a rhombus.
⇒ AB=BC=CD=DA [ Adjacent sides are equal in rhombus ]
In △AOD and △COD
⇒ OA=OC [ Diagonals of rhombus bisect each other ]
⇒ OD=OD [ Common side ]
⇒ AD=CD [ Already given ]
∴ △AOD≅△COD [ By SSS congruence rule ]
⇒ ∠AOD=∠COD [ CPCT ]
⇒ ∠AOD+∠COD=180° [ Linear pair ]
⇒ 2∠AOD=180°
∴ ∠AOD=90°
Hence, the diagonals of a rhombus bisect each other at right angle.
Hope this helps you!!
★ Proof:
Let ABCD is a rhombus.
⇒ AB=BC=CD=DA ______ [ Adjacent sides are eqaul in rhombus ]
In △AOD and △COD
⇒ OA=OC ______[ Diagonals of rhombus bisect each other ]
⇒ OD=OD ________[ Common side ]
⇒ AD=CD
∴ △AOD≅△COD ______[ By SSS congruence rule ]
⇒ ∠AOD=∠COD________ [ CPCT ]
⇒ ∠AOD+∠COD=180° ______[ Linear pair ]
⇒ 2∠AOD=180°
∴ ∠AOD=90°
Hence, the diagonals of a rhombus bisect each other at right angle.