Math, asked by madhavikalhe27, 9 months ago

PROVE THAT THE DIAGONALS OF RHOMBUS ARE PERPENDICULAR TO EACH OTHER

Answers

Answered by Anonymous
2

 \huge \text{Answer}

Continuation of above proof: Corresponding parts of congruent triangles are congruent, so all 4 angles (the ones in the middle) are congruent. This leads to the fact that they are all equal to 90 degrees, and the diagonals are perpendicular to each other.

Answered by Anonymous
0

Answer:

THE DIAGONALS OF RHOMBUS ARE PERPENDICULAR TO EACH OTHER.---> YES they are....

Step-by-step explanation:

⇒ Given :- ABCD is a rhombus

AC and BD are diagonals of rhombus intersecting at O.

⇒ To prove :- ∠BOC = ∠DOC = ∠AOD = ∠AOB = 90°

⇒ Proof :- All Rhombus are parallelogram, Since all of its sides are equal.

AB = BC = CD = DA ────(1)

The diagonal of a parallelogram bisect each other

Therefore, OB = OD and OA = OC ────(2)

In ∆ BOC and ∆ DOC

BO = OD [ From 2 ]

BC = DC [ From 1 ]

OC = OC [ Common side ]

∆ BOC ≅ ∆ DOC [ By SS congruency criteria ]

∠BOC = ∠DOC [ C.P.C.T ]

∠BOC + ∠DOC = 180° [ Linear pair ]

2∠BOC = 180° [ ∠BOC = ∠DOC ]

∠BOC = 180°/2

∠BOC = 90°

∠BOC = ∠DOC = 90°

Similarly, ∠AOB = ∠AOD = 90°

Hence, ∠BOC = ∠DOC = ∠AOD = ∠AOB = 90°

Similar questions