Math, asked by Anonymous, 23 days ago

Prove that the distance of the cloud from the point of observation is :


 \boxed {\sf \dfrac{2h sec \alpha }{tan \beta - tan \alpha} }

Attachments:

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Let assume that

AB be the surface of lake and C be any point of observation above the lake level such that AC = h units.

Let further assume that D be the position of the cloud and F be the reflection of cloud in the lake.

We know, surface level of lake act as a plane mirror. So, distance of the image is equals to distance of the object.

So, DB = BF.

Now, from C, draw CG perpendicular to DF intersecting DF at G.

Let assume that DG = x units

So, DB = DG + GB = x + h units

So, DB = BF = x + h

Let CG = y and CD = z

Now, Consider right-angled triangle CDG

\rm \: tan\alpha  = \dfrac{DG}{CG}  \\

\rm \: tan\alpha  = \dfrac{x}{y}  \\

\rm\implies \:x = y \: tan\alpha  -  -  - (1) \\

Now, In right angle triangle CGF

\rm \: tan\beta  = \dfrac{GF}{CG}  \\

\rm \: tan\beta  = \dfrac{x + 2h}{y}  \\

\rm \: ytan\beta  = ytan\alpha  + 2h \\

\rm \: ytan\beta  - ytan\alpha =  2h \\

\rm \: y(tan\beta  - tan\alpha) =  2h \\

\rm\implies \:y = \dfrac{2h}{tan\beta  - tan\alpha }  -  -  - (2) \\

Now, In right-angle triangle CDG

\rm \: sec\alpha  = \dfrac{CD}{CG}  \\

\rm \: sec\alpha  = \dfrac{z}{y}  \\

\rm \: z = y \: sec\alpha  \\

On substituting the value of y from equation (2), we get

\rm\implies \:z = \dfrac{2h \: sec\alpha }{tan\beta  - tan\alpha }   \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Answered by XxitzZBrainlyStarxX
12

Question:-

If the angle of elevation of a cloud from a point 'h' meters above a lake is 'α' and the angle of depression of its reflection in the lake be 'β'. Prove that the distance of the cloud from the point of observation is

{\sf  \large\dfrac{2h  \: sec \alpha }{tan \beta - tan \alpha}. }

Given:-

  • The angle of elevation of a cloud from a point 'h' meters above a lake is 'α' and the angle of depression of its reflection in the lake be 'β'.

To Find:-

{\sf \large \dfrac{2h sec \alpha }{tan \beta - tan \alpha}. }

Solution:-

Let, AB be a lake. The angle of elevation of cloud P at a point A on a height 'h' from the lake is a and the angle of depression of the reflection F is a cloud is.

So,

∠PCE = α and ∠FCE = β

Let, BP = FB = d

So, PE = BP – EB

=> PE = BP – AC = d – h and FE = FB + AC = d + h

Let, CE = x

In △CEF

 \sf \large tan \beta =  \frac{EF}{CE}

 \sf \large \Rightarrow tan \beta =  \frac{d + h}{x}  \:  \: ...(1)

In △PEC

 \sf \large tan \alpha  =  \frac{PE}{CE}

 \sf \large  \Rightarrow tan \alpha =  \frac{d + h}{x}  \:  \: ...(2)

Subtracting Equation (1) and (2) we get,

 \sf \large tan \beta - tan \alpha =  \frac{d + h}{x}  -  \frac{d - h}{x}  =  \frac{2h}{x}   \Rightarrow x

 \sf \large =  \frac{2h}{tan \beta \: tan \alpha} \:  \: ...(3)

In △PEC

 \sf \large cos \alpha =  \frac{CE}{PC}  =  \frac{x}{PC}

 \sf \large \Rightarrow PC =  \frac{c}{cos \alpha}  = x \: sec \alpha

 \sf \large = PC =  \frac{2h}{tan \beta  \: tan \alpha}

Answer:-

Hence, the distance of the cloud from the point of observation

{\sf   \large= \dfrac{2h  \: sec \alpha }{tan \beta - tan \alpha}. }

Hope you have satisfied.

Attachments:
Similar questions