Math, asked by Jisoo004, 9 months ago

Prove that the equation 2x^2 + 3xy - 2y^2 + 3x + y + 1 represents a pair of perpendicular lines and find the lines.

Answers

Answered by MaheswariS
3

\underline{\textsf{To prove:}}

\textsf{The equation}\;\mathsf{2x^2+3xy-2y^2+3x+y+1=0}

\textsf{represents a pair of perpendicular ines}

\underline{\textsf{Solution:}}

\textsf{Concept:}

\textsf{The condition for the equation}\;\mathsf{ax^2+2hxy+by^2+2gx+2fy+c=0}

\textsf{represents a pair of perpendicular line is a+b=0}

\textsf{Comparing,}

\mathsf{2x^2+3xy-2y^2+3x+y+1=0}\;\textsf{with}

\mathsf{ax^2+2hxy+by^2+2gx+2fy+c=0}\;\textsf{we get}

\textsf{a=2, h=3/2, b=-2}

\textsf{Here, a+b=2+(-2)=0}

\therefore\textsf{The given equation represents a pair of perpendicular lines}

\textsf{Consider,}

\mathsf{2x^2+3xy-2y^2}

\mathsf{=2x^2+4xy-xy-2y^2}

\mathsf{=2x(x+2y)-y(x+2y)}

\mathsf{=(2x-y)(x+2y)}

\textsf{Now,}

\mathsf{2x^2+3xy-2y^2+3x+y+1=(2x-y+l)(x+2y+m)}

\textsf{Equating corresponding coefficients of x and y}

\textsf{on bothsides, we get}

\mathsf{l+2m=3}....(1)

\mathsf{2l-m=1}......(2)

\textsf{Solving (1) and (2)}

\mathsf{l+2m=3}

\mathsf{4l-2m=2}

\textsf{Adding,}

\mathsf{5\,l=5\implies\;l=1}

\mathsf{(2)\implies\;2-m=1\implies\;m=1}

\therefore\textsf{The separate equations are}

\textsf{2x-y+1=0 and x+2y+1=0}

Similar questions