Math, asked by aditdhiman8657, 10 months ago

Prove that the equation of the plane making intercepts a, b and c on the coordinate axes is of the form x/a + y/b + z/c = 1.

Answers

Answered by SushmitaAhluwalia
1

Deriving equation of the plane making intercepts a, b and c on the coordinate axes is of the form \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1

    Let the equation of the plane be

                Ax + By + Cz + D = 0     -------------(1)

    (1) passes through (a, 0, 0)

                A(a) + B(0) + C(0) + D = 0

                aA + D = 0

                aA = - D

                A = -D/a

    Similarly,

                 B = -D/b

                 C = -D/c

     Substituting A, B, C in (1)

                (\frac{-D}{a})x+(\frac{-D}{b})y+\frac{-D}{c})z+D=0

                 -\frac{x}{a}-\frac{y}{b}-\frac{z}{c}+1=0

                   \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1

Similar questions