Math, asked by raisabasu2331, 9 months ago

Prove that the equation secx + cosecx + 2 = 0
has no real solution​

Answers

Answered by hukam0685
0

Step-by-step explanation:

Given:secx + cosecx + 2 = 0

To find: Solution of trigonometric equation

Solution:

We know that sec x= 1/cos x

and cosec x= 1/sinx

put these values to the expression

 \frac{1}{cos \: x}  +  \frac{1}{sin \: x}  =  - 2 \\  \\  \frac{sin \: x +  \: cos \: x}{sinx \: cosx}  =  - 2 \\  \\ sin \: x + cos \: x =  - 2sinx \: cosx \:  \\\\\text{squaring both sides}\\  \\  {sin}^{2} x +  {cos}^{2} x + 2sinxcosx = 4 {sin}^{2} x {cos}^{2} x \\ \\\text{apply identity}\:{sin}^{2} x+ {cos}^{2} x=1 \\\\ 1 + 2sinxcosx = 4 {sin}^{2} x {cos}^{2} x \\\\\text{apply identity} \:2sinx \: cosx=sin2x\\ \\1 + sin2x - ( {2sinx \: cosx})^{2}  = 0 \\  \\ 1 + sin2x -  {sin}^{2} 2x = 0 \\  \\ {sin}^{2} 2x - sin2x - 1 = 0 \\  \\

It is a quadratic equation in sin2x

Put the value in quadratic formula to find the roots of equation

sin2x_{1,2} =  \frac{1 ±  \sqrt{1 - 4(1)( - 1)}}{2}  \\ \\  sin2x_{1,2} = \frac{1 ± \sqrt{5}}{2} \\  \\ sin2x_{1} =  \frac{1 +  \sqrt{5} }{2}  \\  \\ 2x_1 =  {sin}^{ - 1} \bigg(\frac{1 +  \sqrt{5} }{2}\bigg) \\  \\ x_1 =  \frac{1}{2}  {sin}^{ - 1} \bigg(\frac{1 +  \sqrt{5} }{2}\bigg) \\\\\text{it can't be value of x,}\\\text{because sin inverse is not defined for values greater than one}  \\\\ x_2 = \frac{1}{2}  {sin}^{ - 1} \bigg(\frac{1  -   \sqrt{5} }{2}\bigg) \\  \\x_2=-19.02

Hope it helps you.

To learn more on brainly:

1)if 21 cosec theta =29 find the value of cossquare theta-sinsquare theta/1-2sinsquare theta

https://brainly.in/question/21135044

2)Prove this identity in trigonometry

https://brainly.in/question/21098065

Answered by charisma47
0

Answer:

=-19.02 is your answer

Similar questions