Math, asked by akash101102, 1 year ago

prove that the equation x^2(a^2+b^2)+2x(ac+bd)+(c^2+d^2)=0 has no real roots if ad is not equal to bc

Answers

Answered by saurabhsemalti
22
for no real roots discriminant <0
dis =  \sqrt{ {(2(ac + bd)}^{2} - 4( {d}^{2}  +  {c}^{2} )( {a}^{2} +  {b}^{2})   }  \\ dis &lt; 0 \\ (2(ac + bd)) {}^{2}   &lt; 4( {d}^{2}  {a}^{2}  +  {d}^{2}  {b}^{2}  +  {c}^{2}  {a}^{2}  +  {b}^{2}  {c}^{2} ) \\   {a}^{2}  {c}^{2}  +  {b}^{2}  {d}^{2}  + 2abcd  &lt;  {a}^{2}  {d}^{2}  +  {d}^{2}  {b}^{2}  +  {c}^{2}  {a}^{2}  +  {b}^{2}  {c}^{2}  \\ 2abcd  &lt;   {a}^{2}  {d}^{2}  + b {}^{2}  {c}^{2}  \\ see \: when \: ad = bc \\ lhs = rhs \\ that \: means \: at \: ad = bc \: equation \: will \: have \: roots \: ...but \: for \: rest \: it \: wil \: not \: have \: roots
mark as brainliest
Answered by mathsdude85
11

SOLUTION :  

Option (b) is correct :  ad = bc  

Given : (a² + b²)x² - 2(ac + bd)x + ( c² + d²) = 0

On comparing the given equation with ax² + bx + c = 0  

Here, a = (a² + b²) , b = - 2( ac + bd)  , c = ( c² + d²)

D(discriminant) = b² – 4ac

Given roots are equal so, D = b² - 4ac = 0

{- 2(ac + bd)}² - 4(a² +b²)(c² + d²) = 0

4(ac + bd)² - 4(a² + b²)(c²+ d²) = 0

4(a²c²+ b²d² + 2abcd ) - 4( a²c² + a²d² + b²d² +  b²c² = 0

[(a + b)² = a² + b² + 2ab]

4(a²c² + b²d² + 2abcd  - a²c² -  a²d² - b²d² -  b²c² ) = 0

(a²c² - a²c² + b²d² - b²d² + 2abcd  -  a²d² -  b²c² ) = 0

2abcd  -  a²d² -  b²c² = 0

-(a²d² + b²c² - 2abcd) = 0  

a²d² + b²c² - 2abcd = 0  

(ad)² + (bc)² - 2×ad × bc = 0

(ad - bc)² = 0

[(a - b)² = a² + b² - 2ab]

ad - bc = 0

ad = bc  

HOPE THIS ANSWER WILL HELP YOU...

Similar questions