prove that the equation x2 ( a2 + b2 ) + 2x ( ac + bd ) + ( c2 +d2 ) =0 has no real roots if ad=bc(ad not equal to bc).
Answers
Compare the given quadratic equation with Ax2 + Bx + C = 0
Here A = a2 + b2 , B = 2(ac + bd) and C = c2 + d2
Consider, B2 – 4AC = [2(ac + bd)]2 – 4 ´ (a2 + b2 ) x (c2 +d2)
= 4[a2c2 + 2abcd + b2d2] – 4[a2c2 + a2d2 + b2c2 + b2d2]
= 4a2c2 + 8abcd + 4b2d2 – 4a2c2 – 4a2d2 – 4b2c2 – 4b2d2
= 8abcd– 4a2d2 – 4b2c2
= –4[4a2d2 + 4b2c2 – 2abcd]
= –4[ad – bc]2
Hence the given equation has no real roots unless ad ¹ bc
Answer:
Step-by-step explanation:
Solution :-
Let D be the discriminant of the equation (a² + b²)x² + 2x(ac + bd) + (c² + d²) = 0
Then,
⇒ D = 4(ac + bd)² - 4(a² + b²)(c² + d²)
⇒ D = 4[(ac + bd)² - 4(a² + b²)(c² + d²)]
⇒ D = 4[a²c² + b²d² + 2ac × bd - a²c² - a²d² - b²c² - b²d²]
⇒ D = 4[2ac × bd - a²d² - b²c²]
⇒ D = - 4[a²d² + b²c² - 2ad × bc]
⇒ D = - 4(ad - bc)²
It is given that ad ≠ bc
⇒ ad - bc ≠ 0
⇒ (ad - bc)² > 0
⇒ - 4(ad - bc)² < 0
⇒ D < 0
Hence, the given equation has no real roots.