Math, asked by 12ahujagitansh, 19 days ago

Prove that the following function

f(x) = logx -  {tan}^{ - 1} \: x \: is \: always \: strictly \: increasing

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = logx -  {tan}^{ - 1}x \\

Let first define the domain. As logx is defined when x > 0

Now, On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}  f(x) = \dfrac{d}{dx}[logx -  {tan}^{ - 1}x] \\

\rm \: f'(x) = \dfrac{1}{x}  - \dfrac{1}{1 +  {x}^{2} }

\rm \: f'(x) = \dfrac{ {x}^{2}  + 1 - x}{x( {x}^{2}  + 1)}

can be further rewritten as

\rm \: f'(x) = \dfrac{ {x}^{2}- x + 1}{x( {x}^{2}  + 1)}

We know,

If in a quadratic expression f(x) = ax² + bx + c such that, a > 0 and Discriminant, D = b² - 4ac < 0, then f(x) > 0

Now, here

x² - x + 1 is such that coefficient of x² = 1 > 0 and Discriminant, D = 1 - 4 × 1 × 1 = 1 - 4 = - 3 < 0

So,

\rm\implies \:\rm \:  {x}^{2} - x + 1 &gt; 0

and

\rm \:  {x}^{2}  + 1 &gt; 0

\rm \: As \: x \:  \in \: (0, \infty ), \: so \: x &gt; 0

\rm\implies \:\dfrac{ {x}^{2} - x + 1 }{x( {x}^{2} + 1) } &gt; 0

\rm\implies \:f'(x) &gt; 0

\rm\implies \:f(x) \: is \: strictly \: increasing.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions