PROVE THAT THE FOLLOWING QUESTION.
Attachments:
Answers
Answered by
0
cot(90-θ) sin(90-θ)/sin θ + cot 40/tan50 -( cos^2(20) + cos^2(70))=1
Proof
We know that,
cot(9-θ)=tan θ
sin(90-θ)=cos θ
tan 50=cot(90-50)
cos^2(70)=sin^2(90-70)
----------------------------------------------------------------------------
tanθ*cosθ/sin θ+cot40/cot(90-50)-( cos^2(20) + sin^2(90-70))------------>a
tan θ=sinθ/cos θ (put this in eq a)
sin θ/cos θ*cosθ/sinθ+cot40/cot40-( cos^2(20) + sin^2(20))----------------->b
sin θ/cos θ*cosθ/sinθ=1
cot40/cot40=1
cos^2(θ) + sin^2(θ)=1,
so ,
( cos^2(20) + sin^2(20))=1
1+1-1=1
cot(90-θ) sin(90-θ)/sin θ + cot 40/tan50 -( cos^2(20) + cos^2(70))=1
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
Math,
7 months ago
Science,
1 year ago
Physics,
1 year ago
CBSE BOARD X,
1 year ago
Math,
1 year ago