Prove that the four points 4i + 5j + k, -(j + k), 3i + 9j + 4k and -4i + 4j + 4k are coplanar.
Answers
Answer:
Yes, the given points are CO-PLANAR.
Step-by-step explanation:
The given points are A = 4i + 5j + k ,B = -(j + k) = 0i - j - k , C = 3i + 9j + 4k and D = -4i + 4j + 4k
So
u = AB = ( 0 - 4 , - 1 - 5 , - 1 - 1 ) = ( - 4 , - 6 , - 2 )
v = AC = ( 3 - 4 , 9 - 5 , 4 - 1 ) = ( - 1 , 4 , 3 )
w = AD = ( -4 - 4 , 4 - 5 , 4 - 1 ) = ( -8 , - 1 , 3 )
The given points will be CO-PLANAR if
[ u v w ] = 0
So
[ u v w ]
Clearly [ u v w ] = 0
So the given points are CO-PLANAR.
Answer:
Step-by-step explanation:
The given points are A = 4i + 5j + k ,B = -(j + k) = 0i - j - k , C = 3i + 9j + 4k and D = -4i + 4j + 4k
So
u = AB = ( 0 - 4 , - 1 - 5 , - 1 - 1 ) = ( - 4 , - 6 , - 2 )
v = AC = ( 3 - 4 , 9 - 5 , 4 - 1 ) = ( - 1 , 4 , 3 )
w = AD = ( -4 - 4 , 4 - 5 , 4 - 1 ) = ( -8 , - 1 , 3 )
The given points will be CO-PLANAR if
[ u v w ] = 0
So
[ u v w ]
Clearly [ u v w ] = 0
So the given points are CO-PLANAR.