Math, asked by bss699723, 2 months ago

Prove that the function f(x) = 3sin(2x) - cos(2x) + 4 is one-one in the interval [-\frac{\pi }{6} , \frac{\pi }{3} ]

Answers

Answered by sakshi1158
19

Answer:

trigonometric function inequalities Sine integral Catalan ... \frac{\sin t }{t}\geq\frac{\pi^{2}-t^{2}}{\pi^{2}+t^{2}}, \quad t\ in ( 0 ... 2^{4n} ( n-1 ) ( n+1 ) }>0\quad\text{for } n\geq4, ...

Answered by RUHIADAHIR
27

[

6

−π

,

3

π

]

f:X→[2,6]

f(x)=

3

sin2x−cos2x+4

f(x)=2×

2

3

sin2x−2×

2

1

cos2x+4

f(x)=2cos

6

π

sin2x−2sin

6

π

cos2x+4

f(x)=2(sin2xcos

6

π

−sin

6

π

cos2x)+4

f(x)=2[sin(2x−

6

π

)]+4

∵f(x)is one-one and onto function.

if f(x)=2

∴2[sin(2x−

6

π

)]+4=2

2[sin(2x−

6

π

)]=−2

sin(2x−

6

π

)=−1

(2x−

6

π

)=sin

−1

(−1)

2x−

6

π

=

2

−π

2x=

2

−π

+

3

π

2x=

3

−π

⇒x=

6

−π

if f(x)=6

2[sin(2x−

6

π

)]+4=6

sin(2x−

6

π

)=1

2x−

6

π

=

2

π

x=

3

π

∴xϵ[

6

−π

,

3

π

]

hope it helps you

Similar questions