Physics, asked by DHANANJAYNAIK255, 9 months ago

Prove that the fundamental frequancy of an open pipe is 2 times the fundamental frequancy of a closed pipe of the same length

Answers

Answered by shadowsabers03
6

For an open pipe,

\displaystyle\longrightarrow\sf{L=\dfrac{\lambda}{2}}

\displaystyle\longrightarrow\sf{\lambda=2L}

Then its fundamental frequency is,

\displaystyle\longrightarrow\sf{\nu_{o}=\dfrac{v}{\lambda}}

\displaystyle\longrightarrow\sf{\nu_o=\dfrac{v}{2L}\quad\quad\dots(1)}

where \sf{v} is the velocity of sound.

For a closed pipe,

\displaystyle\longrightarrow\sf{L=\dfrac{\lambda}{4}}

\displaystyle\longrightarrow\sf{\lambda=4L}

Then its fundamental frequency is,

\displaystyle\longrightarrow\sf{\nu_{c}=\dfrac{v}{\lambda}}

\displaystyle\longrightarrow\sf{\nu_c=\dfrac{v}{4L}\quad\quad\dots(2)}

From (1) and (2) we see that, for the constant velocity of sound,

\displaystyle\longrightarrow\sf{\underline{\underline{\nu_o=2\nu_c}}}

\displaystyle\longrightarrow\sf{\dfrac{v}{2L}=2\cdot\dfrac{v}{4L}}

\displaystyle\longrightarrow\sf{\dfrac{v}{2L}=\dfrac{v}{2L}}

Hence the Proof!

Attachments:
Similar questions