Math, asked by Itz0KARAN, 4 months ago

prove that the given number is Irrational​

Attachments:

Answers

Answered by ItzKomal0310
7

Answer:

 \huge\pink{\boxed{\red{\mathfrak{\fcolorbox{green}{cyan}{\underline{\green(Question)}}}}}}

 \sqrt[7]{5}

7√5

Let us assume that

 \sqrt[7]{5}

is rational number

Hence,

 \sqrt[7]{5}

can be written in the form of

 \frac{a}{b}

where a,b

(b≠0)

are co-prime

⟹ \sqrt[7]{5} =  \frac{a}{b}   \\ ⟹  \sqrt{5}  =  \frac{a}{7b}

But here

 \sqrt{5}

is irrational and

 \frac{a}{7b}

is rational

as Rational≠Irrational

This is a contradiction

so

 \sqrt[7]{5}

is a irrational number

Answered by ItzMissKomal
2

Step-by-step explanation:

\pink{\boxed{\red{\mathfrak{\fcolorbox{green}{cyan}{\underline{\green(Question)}}}}}} \\  \sqrt[7]{5}  \\ </p><p> \sf{Let \:  us  \: assume \:  that } \\ </p><p> \sqrt[7]{5}  \\ </p><p> \sf{is  \: rational  \: number} \\  \sf{Hence,} \\ </p><p>\sqrt[7]{5}  \\ </p><p> \sf{ can \:  be  \: written \:  in \:   \: the  \: form \:  of  \: }  \\ </p><p>\frac{a}{b}  \\ </p><p>   \sf{where  \: a,b} \\ </p><p>(b≠0) \\ </p><p>  \sf{are \:  co-prime}</p><p>⟹ \sqrt[7]{5} =  \frac{a}{b}   \\ ⟹  \sqrt{5}  =  \frac{a}{7b} </p><p></p><p>	 \sf{But  \: here} \\ </p><p> \sqrt{5} \\ </p><p> \sf{ is  \: irrational  \: and } \\ \frac{a}{7b}   \\  \sf</p><p>{is  \: rational.} \\ </p><p> \sf{as  \: Rational≠Irrational  }\\  \sf{</p><p>This \:  is \:  a \:  contradiction  \: </p><p>so } \\ </p><p>\sqrt[7]{5}  \\ </p><p> \sf{ is \:  a  \: irrational  \: number}

  • Hope this helps you!!
Similar questions