Math, asked by surabhiver123, 1 year ago

Prove that the intercept of a tangent between two parallel tangents to circke subtends a right angle at the centre.

Answers

Answered by nimbhora2103khushi
1
prove that the intercept of a tangent between two parallel tangents to acircle subtends a right angle triangle at the centre. Given: XY and X'Y' at are two parallel tangents to thecircle wth centre O and AB is thetangent at the point C,which intersects XY at A and X'Y' at B.
Answered by Yugant1913
10

\huge\sf\mathbb\color{white} \underline{\colorbox{black}{⚔☯☃️SoLuTiOn☯⚔☃️}}

Step-by-step explanation:

Let XY and X'Y' are two parallel tangents and AB is intercept of another tangent. O is centre of circle.

Since, the length of the tangent drawn from external point are equal, hence, as the figure,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AP=AC

∴ \:  \: In  \: ΔAPO \:  and  \: ΔACO,</p><p> \\ AP=AC

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AO=AO,  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ( common)  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: OP=OC,  \:  \:  \:  \:  \:  \:  \: (radii \:  of \:  the \:  circle)  \\

∴ \:  \:  \: ΔAPO≅ΔACO,  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ( SSS congruency)  \\

⟹ \:  \:  \: ∠PAO=∠OAC

⟹ \:  \:  \:  \: ∠PAO=2∠OAC \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2∠OAC

Similarly we can prove that,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ∠CBO=∠OBQ

⟹ \:  \:  \:  \:  \:  \:  \:  \: ∠CBQ=2∠CBO

Since, XY || X'Y'

∴ \:  \:  \:  \: ∠PAC +∠QBC=180゚,  \\ (interior \: angles \: of \: the \: same \: side)

⟹2∠CAO+2∠CBO=180゚ \\ </p><p>⟹∠CAO+∠CBO=90゚ \:  \:  \:  \:  \: ...(1)

In \:  ΔAOB,

∠CAO+∠CBO+∠AOB=180゚ \\

⟹ \:  \:  ∠CAO+∠CBO=180゚-∠AOB \\

⟹ \:  \:  \:  \:  \: 90゚=180゚-∠AOB \\ [from \: eqn.(1)]

⟹180゚ - 90゚=∠AOB

∴ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ∠AOB=180゚-90゚ \\

Thus, intercept of another tangent subtends right angle at center.

Attachments:
Similar questions