Math, asked by zoo0oxdhbaja, 1 year ago

Prove that the least perimeter of an isosceles triangle in which circle or radius r can be inscribed is 6root3 r

Answers

Answered by sharinkhan
21
The solution has been attached 
Attachments:
Answered by amirgraveiens
1

Proved below.

Step-by-step explanation:

Given:

Let ABC is an isosceles triangle with AB  =AC = x and BC = y and a circle with centre O and radius r isinscribed in the triangle. Join OA and OE and OD.

From Δ ABF,

AF^2+BF^2=AB^2

(3r)^2+(\frac{y}{2} )^2=x^2         [BF= \frac{BC}{2}  ]     [1]

Again, from ΔADO,

AO^2=DO^2+AD^2

(2r)^2=r^2+AD^2

4r^2=r^2+AD^2

3r^2 = AD^2

AD =\sqrt{3}r

Now, BE = BF and AD = AE   (Since tangents drawn from an external point are equal)           [2]

Now,

AB = BE + AE

x = BE + AE                [given]

x = BF + AD                [from 2]

x = \sqrt{3}r+\frac{y}{2}          

\frac{y}{2} = x - \sqrt{3}r           [3]

Putting value of Eq (3) in (1), we get

(3r)^2+(x-\sqrt{3}r )^2=x^2

9r^2+x^2-2\sqrt{3}rx+ 3r^2=x^2

12 r^2=2\sqrt{3}rx

6r=\sqrt{3}x

x=\frac{6r}{\sqrt{3} }

Now, From Eq (3)

\frac{y}{2} = x - \sqrt{3}r

\frac{y}{2} = \frac{6r}{\sqrt{3} }  - \sqrt{3}r

\frac{y}{2} = \frac{6\sqrt{3}}{3 } r - \sqrt{3}r

\frac{y}{2} =\frac{(6\sqrt{3}-3\sqrt{3})r  }{3}

\frac{y}{2} =\frac{3\sqrt{3}r  }{3}

y=2\sqrt{3} r

Perimeter = 2x+y

                 = 2(\frac{6}{\sqrt{3} }r )+2\sqrt{3}r

                 = \frac{12}{\sqrt{3} }r +2\sqrt{3}r

                 = \frac{12r+ 6r}{\sqrt{3} }

                 = \frac{18r}{\sqrt{3} }

                 = \frac{18r \times \sqrt{3} }{\sqrt{3}\times\sqrt{3}}

                 = \frac{18\sqrt{3}r}{3}

                 = 6\sqrt{3}r

Hence proved.

Attachments:
Similar questions