prove that the length of the common chord of the two circles whose equations are (x-a)²-(y-b)²=c² and (x-b)²-(y-d)²=c² is ✓(4c²-2(a-b)²)
Answers
Answered by
0
Answer:
R.E.F image
S
1
=(x−a)
2
+(y−b)
2
=c
2
S
2
=(x−b)
2
+(y−a)
2
=c
2
∴Eq
n
of common chord
→S
1
−S
2
=0
⇒(x−a)
2
+(y−b)
2
−(x−b)
2
−(y−a)
2
=0
⇒−2xa−2yb+2xb+2ya=0
⇒(a−b)(y−x)=0
eq
n
of common chord ⇒y=x
C
1
M= length of ⊥ from C
1
(a,b) an line PQx−y=0
Length C
1
M=
2
∣a−b∣
C
1
P= radius of 1
st
circle = C
∴ In ΔPC
1
M,PM=
(PC
1
)
2
+(C
1
M)
2
⇒
c
2
−
2
(a−b)
2
PQ=2PM=2
C
2
−
2
(a−b)
2
PQ=
4C
2
−2(a−b)
2
(option
Similar questions