prove that the length of the tangents drawn from the external point to a circle are equal
Answers
Answered by
0
Step-by-step explanation:
Given: A circle with centre O; PA and PB are two tangents to the circle drawn from an external point P.
To prove: PA = PB
Construction: Join OA, OB, and OP.
It is known that a tangent at any point of a circle is perpendicular to the radius through the point of contact.
OA⊥PA
OB⊥PB
In △OPA and △OPB
∠OPA=∠OPB (Using (1))
OA=OB (Radii of the same circle)
OP=OP (Common side)
Therefor △OPA≅△OPB (RHS congruency criterion)
PA=PB
(Corresponding parts of congruent triangles are equal)
Thus, it is proved that the lengths of the two tangents drawn from an external point to a circle are equal.
The length of tangents drawn from any external point are equal.
So statement is correct..
solution
Similar questions
Social Sciences,
2 months ago
Business Studies,
2 months ago
Biology,
2 months ago
English,
4 months ago
English,
4 months ago
English,
10 months ago
Math,
10 months ago
English,
10 months ago