Math, asked by yashrajpandey732, 9 months ago

prove that the length of two tangents drawn from an external point to circle are equal​

Answers

Answered by MOSFET01
1

Answer:

\setlength{\unitlength}{22} \begin{picture}(6,6) \linethickness{0.6} \put(2,2){\oval(2,2)}\put(2,2){\circle*{0.1}}\qbezier(2,2)(1.5,2.9)(1.5,2.9)\qbezier(2,2)(1.5,1)(1.5,1.1)\qbezier(3.5,3.5)(3,3.4)( - 1,2)\put(2,2){\line( - 1,0){0.5}}\qbezier( - 1,2)(3,0.6)(3.5,0.4)\put(1,2){\line( - 1,0){0.5}}\put(0,2){\line( - 1,0){0.5}}\put( - 0.6,2){\line( - 1,0){0.3}}\qbezier(1.3,2.8)(1.4,2.2)(1.7,2.5)\qbezier(1.3,1.2)(1.3,1.6)(1.8,1.5)\put(2.05,2){$ \bf O $}\put(1.4,3){$ \bf A $}\put(1.4,0.7){$ \bf C $}\put( - 1.5,1.9){$ \bf B $}\end{picture}

Given : AB and BC are two tangents mating to external point

To Prove : AB = BC

To Proof :

Method 1

In \triangle{AOB} \: & \: \triangle{BOC}

AO = OC...... (radius of circle)

OB = OB...... (same side)

 \angle{OAB} \: =\: \angle{BOC}

Tangents meets the radius at 90°

\triangle{AOB} \: \cong \: \triangle{BOC}

By C.P.C.T ( Corresponding Parts Of Congruent Triangles)

 \overline{AB} \: =\: \overline{BC}

Method 2

In \triangle{AOB} \: & \: \triangle{BOC}

 AB^{2}\: +\: AO^{2}\: =\: OB^{2}

Eq. 1

 BC^{2}\: +\: CO^{2}\: =\: OB^{2}

Eq. 2

Equation 1 & 2

 AB^{2}\: +\: AO^{2}\: =\: BC^{2}\: +\: CO^{2}

AO = CO.. (radius of circle)

 AB^{2}\: +\: \cancel{CO^{2}} \: =\: BC^{2}\: +\: \cancel{CO^{2}}

 AB^{2}\: =\: BC^{2}

 \overline{AB} \: =\: \overline{BC}

Hence Proved

Similar questions