Math, asked by Anonymous, 2 months ago

Prove that the line segment joining the midpoint of the diagonals of a trapezium is parallel to the parallel sides and equal to half of their difference .​

Answers

Answered by rabinderkour770
2

Answer:

Let E and F are midpoints of the diagonals AC and BD of trapezium  ABCDrespectively.

Draw DE and produce it to meet AB at G

Consider △AEG and △CED

⇒  ∠AEG=∠CED                 [ Vertically opposite angles ]

⇒  AE=EC                 [ E is midpoint of AC ]

⇒  ∠ECD=∠EAG          [ Alternate angles ]

⇒  △AEG≅△CED     [ By SAA congruence rule ]

⇒  DE=EG     ---- ( 1 )  [ CPCT ]

⇒  AG=CD    ----- ( 2 )  

In △DGB

E is the midpoint of DG           [ From ( 1 ) ]

F is midpoint of BD

∴  EF∥GB

⇒  EF∥AB       [ Since GB is part of AB ]

⇒  EF is parallel to AB and CD.

Also, EF=21GB

⇒  EF=21(AB−AG)

⇒  EF=21(AB−CD)           [ From ( 2 ) ]

Step-by-step explanation:

please mark my answer

Answered by ferozpurwale
1

Answer:

Let E and F are midpoints of the diagonals AC and BD of trapezium  ABCDrespectively.

Draw DE and produce it to meet AB at G

Consider △AEG and △CED

⇒  ∠AEG=∠CED                 [ Vertically opposite angles ]

⇒  AE=EC                 [ E is midpoint of AC ]

⇒  ∠ECD=∠EAG          [ Alternate angles ]

⇒  △AEG≅△CED     [ By SAA congruence rule ]

⇒  DE=EG     ---- ( 1 )  [ CPCT ]

⇒  AG=CD    ----- ( 2 )  

In △DGB

E is the midpoint of DG           [ From ( 1 ) ]

F is midpoint of BD

∴  EF∥GB

⇒  EF∥AB       [ Since GB is part of AB ]

⇒  EF is parallel to AB and CD.

Also, EF=21GB

⇒  EF=21(AB−AG)

⇒  EF=21(AB−CD)           [ From ( 2 ) ]

Step-by-step explanation:

please mark my answer

Similar questions