Math, asked by momigogoi, 1 year ago

prove that the line x/a+ y/b =1 is tangent to the curve y=be^-x/a at the point, where the curve cuts y-axis.

Answers

Answered by rohitkumargupta
12

HELLO DEAR,

the equation of curve is y = be^{-x/a}.
it crosses the y - axis at the point where x = 0.
putting x = 0 in the equation of the curve, we get y = b.
So, the point of the contact is (0 , b).

now, y = be^{-x/a}

dy/dx = -br^{-x/a}/a.

therefore, (dy/dx)(0 , b) = -b/a.

So, the equation of the tangent is

(y - b)/(x - 0) = -b/a

bx + ay = ab

x/a + y/b = 1

Hence, x/a + y/b = 1 touches the curve y = be^{-x/a} at (0,b}

I HOPE ITS HELP YOU DEAR,
THANKS

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \bullet\bf{given \: that}

 \bf{the \: curve \: \:  \:  y =  {be}^{ \frac{ - x}{a} } }

 \:  \\  \to \bf{it \: meets \: y \: axis \: y =  {be}^{0}  = b}

 \:  \green{ \bf{ \underline{differentiating \: the \: equation \: wrt \: x}}}

 \:  \qquad \implies \displaystyle \sf{ \frac{dy}{dx}  =   \bigg({ \frac{ - be}{a} } \bigg)^{ \frac{ - x}{a} } }

 \:  \:  \\  \qquad \implies \displaystyle \sf{ \frac{dy}{dx} at(0andb) =   { \frac{ - be}{a} }^{0}  =  -  \frac{b}{a} }

 \:   \\ \qquad \implies  \underline{\displaystyle \sf{ \: equation \: of \: the \: tangent \:at(b.0) }}

 \:  \qquad \implies \displaystyle \sf{(y - b) =  \frac{ - b}{a} (x - 0)}

 \:  \:  \qquad \implies \displaystyle \sf{ay - ab =  - bx}

 \:  \:   \qquad \implies \displaystyle \sf{or \:  \:  \:  \frac{x}{a}  +  \frac{y}{b}  = 1}

\green{\underline{\bf{\to hence \: the \: line \: touches \: the \: curve \: at \: the points \: where \: the \: curve \: intersect \: the \: axis \:of y}}}

Similar questions