prove that the lines 2x+3y+8=0 and 27x-18y+10=0 are perpendicular to each other.
Answers
Answer:
-1
Step-by-step explanation:
2x+3y+7=0⇒3y=−2x−7⇒y=
2x+3y+7=0⇒3y=−2x−7⇒y= 3
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x−
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 3
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y=
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 18
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 =
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 =
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 =
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 ×
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 23 =−1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 23 =−1the given lines are perpendicular to each other
Answer:
-1
Step-by-step explanation:
2x+3y+7=0⇒3y=−2x−7⇒y=
2x+3y+7=0⇒3y=−2x−7⇒y= 3
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x−
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 3
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y=
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 18
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 =
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 =
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 =
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 ×
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 2
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 23
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 23 =−1
2x+3y+7=0⇒3y=−2x−7⇒y= 3−2 x− 37 27x−18y+25=0⇒18y=27x+25⇒y= 23 x+ 1825 ∴m 1 = 3−2 ;m 2 = 23 ⇒m 1 m 2 = 3−2 × 23 =−1the given lines are perpendicular to each other