Math, asked by 33Brainly33, 3 months ago

prove that the parallelogram circumscribing a circle is a rhombus​

Answers

Answered by Ꭺαrση
187

Since ABCD is a parallelogram circumscribed in a circle

AB=CD (1)

BC=AD (2)

DR=DS (Tangents on the circle from same point D)

CR=CQ(Tangent on the circle from same point C)

BP=BQ (Tangent on the circle from same point B )

AP=AS (Tangents on the circle from same point A)

Adding all these equations we get:-

  • DR+CR+BP+AP=DS+CQ+BQ+AS
  • (DR+CR)+(BP+AP)=(CQ+BQ)+(DS+AS)
  • CD+AB=AD+BC

Putting the value of equation 1 and 2 in the above equation we get

  • 2AB=2BC
  • AB=BC (3)

From equation (1), (2) and (3) we get

AB=BC=CD=DA

∴ABCD is a Rhombus

Answered by ItzNobitaHereXd
2

HOPE MY ANSWER WOULD HELPS U

Attachments:
Similar questions